to a procedure recommended for relatively unreactive allyl acetate.⁷ A mixture of 1.36 g (5 mmol) of 2, 0.76 mL (5 mmol) of dimethyl malonate, 0.40 mL (2.6 mmol) of DBU, and 0.490 g (0.42 mmol) of Pd(Ph₃P)₄ in 13 mL of toluene was stirred at room temperature for 18 h and was further maintained at 100 °C for 7 h. High-resolution NMR spectrum of the crude product and TLC revealed no incorporation of malonate into the sugar residue. Unconverted starting material was recovered mostly intact.

The reaction was repeated under modified conditions reported in this paper as follows: to 1.2 g (4.41 mmol) of triacetylglucal, 0.0376 g (0.065 mmol) of Pd(dba)₂, and 0.026 g of DIPHOS in 5 mL of THF was added 0.83 g (4.88 mmol) of potassium dimethyl malonate in 10 mL of THF. The mixture was stirred at room temperature for 3 days and further refluxed for 12 h. TLC revealed only unconverted starting material.

3-Acetyl-1,2-dideoxy-4,6-O-isopropylidene-D-arabinohex-1-enopyranose (3b). The acetoxy derivative 3b was prepared according to the procedure reported above for 3c except substituting acetic anhydride for trifluoroacetic anhydride. Chromatography on silica gave the pure compound: ¹H NMR (80 MHz) § 1.40 (s, 3 H), 1.50 (s, 3 H), 2.07 (s, 3 H), 3.87 (m, 4 H), 4.73 (dd, J = 6, 2 Hz, 1 H), 5.33 (d, J = 7 Hz, 1 H), 6.33 (dd, J= 6, 2 Hz, 1 H); HRMS, 228.0981 (M⁺-; calcd for $C_{11}H_{16}O_5$ 228.0997).

Attempted Alkylation of 3b. Potassium salt of dimethyl malonate was prepared from 0.20 g (4.98 mmol) of potassium hydride and 0.65 mL (12.7 mmol) of dimethyl malonate in 10 mL of anhydrous THF, and this solution was added to 0.628 g (2.71 mmol) of 3b dissolved in 5 mL of THF. To this were added 0.0376 g of $Pd(dba)_2$ and 0.026 g of DIPHOS. The mixture was stirred for 3 days at room temperature and subsequently was refluxed for 12 h. The reaction was worked up, and the product was analyzed by TLC and high-resolution ¹H NMR. No trace of coupling product 4 was detected.

Preparation and Attempted Pd(0)-Catalyzed Alkylation of the Phosphate 3d. The diethyl phosphate 3d was prepared by treating the alcohol 2 with diethyl chlorophosphate in the presence of triethylamine and (dimethylamino)pyridine in methylene chloride. A mixture of 0.464 g (1.44 mmol) of 3d, 0.166 g (0.144 mmol) of Pd(Ph₃P)₄, and 0.244 g (1.43 mmol) of potassium dimethyl malonate in 10 mL of THF was stirred at room temperature for 2 days. No alkylation products were detected by comparison of TLC's of this reaction mixture with those of an authentic sample of 4.

Hydrolysis of 4 and 5. A solution of 0.73 g of 4 in 2 mL of THF and 1 mL of methanol was stirred with 1 mL of 2 N HCl for 3 h. Methylene chloride (30 mL) and 10 mL of saturated sodium bicarbonate were added, and the organic layer was separated. Further extraction with methylene chloride, drying, and concentration yielded an oil, which was purified by column chromatography (3% methanol/CH₂Cl₂, silica) to get 0.55 g (88%) of 6: $[\alpha]_{\rm D}$ 50.1 ± 0.4° (c 2 CDCl₃); IR (neat) 3200–3550 (br), 1730 cm⁻¹; ¹H NMR (360 MHz) δ 3.39 (m br, H₅ and OH, 2 H), 3.55 (d, $J_{1,7} = 8$ Hz, $HC(CO_2Me)_2$, 1 H), 3.75 (s, 3 H), 3.76 (s, 3 H), 3.70–3.80 (m br, $H_{6,s}$ and OH, 3 H), 4.15 (d br, $J_{4,5} = 7$ Hz, H_4 , 1 H), 4.77 (dm, $J_{1,7} = 8$ Hz, H₁, 1 H), 5.78–5.95 (m, H_{2,3}, 2 H); ¹³C NMR δ 52.69, 52.73, 56.49, 62.60, 63.38, 72.76, 78.82, 127.30, 131.30, 166.94, 167.33; HRMS, 211.0596 ($M^+ - (CH_3O + H_2O)$; calcd for $C_{10}H_{11}O_5$ 211.0607).

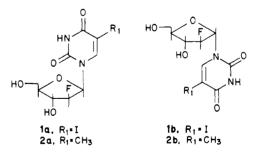
With the identical procedure, 7 was prepared from 5 in 77% yield: $[\alpha]_D - 19.2 \pm 0.8^{\circ}$ (c 1 CDCl₃); IR (KBr) 3250-3330 (br), 1724 cm⁻¹; ¹H NMR (360 MHz) δ 1.10 (s, CH₃, 3 H), 2.20-2.40 (s br, OH, 1 H), 2.40–2.60 (s br, OH, 1 H), 3.33 (ddd, $J_{4,5}$ = 8 Hz, $\begin{array}{l} J_{5,6a}=4~{\rm Hz},\,J_{5,6e}=4~{\rm Hz},\,{\rm H_5},\,1~{\rm H}),\,3.65{-}3.80~({\rm m},\,{\rm H_6},\,2~{\rm H}),\,4.10\\ ({\rm d},\,{\rm m}\,J_{4,5}=8~{\rm Hz},\,{\rm H_4},\,1~{\rm H}),\,4.37~({\rm s~br},\,{\rm H_1},\,1~{\rm H}),\,5.87{-}5.97~({\rm m},\,{\rm H_{2,3}}), \end{array} \end{array}$ 2 H) [assignments and coupling constants established by double irradiation and NOE experiments]; 13 C NMR δ 14.58, 36.32, 36.51, 58.41, 62.85, 63.64, 78.96, 79.54, 124.84, 131.98, 214.70, 216.48; HRMS, 240.1007 (M⁺·; calcd for C₁₂H₁₆O₅ 240.0997).

Benzylation of 4 to 8. To a suspension of 0.017 g (0.45 mmol) of potassium hydride in 2 mL of THF was added 0.136 g (0.45 mmol) of 4 dissolved in 2 mL of THF at 0 °C. The mixture was stirred for 30 min, and 0.072 mL (0.60 mmol) of benzyl bromide was added dropwise from a syringe. The mixture was warmed to room temperature and further stirred for 2 h. Saturated potassium hydrogen phosphate (10 mL) was added, and the

product was extracted into methylene chloride. Concentration and isolation by preparative TLC yielded 0.092 g (52%) of 8: IR (neat) 3080, 3060, 1735, 1605, 1585, 1500, 1200–1100 cm⁻¹; ¹H NMR $(360 \text{ MHz}) \delta 1.42 \text{ (s, CH}_3\text{C}, 3 \text{ H}), 1.52 \text{ (s, CH}_3\text{C}, 3 \text{ H}), 3.19 \text{ (d, } J$ = 14 Hz, PhCH, 1 H), 3.43 (ddd, $J_{5,6a}$ = 10 Hz, $J_{4,5}$ = 8 Hz, $J_{5,6e}$ = 5 Hz, H₅, 1 H), 3.60 (d, J = 14 Hz, PhCH, 1 H), 3.67 (s, OCH₃, 3 H), 3.70 (s, OCH₃, 3 H), 3.84 (dd, $J_{6a,6e} = 10$ Hz, $J_{6a,5} = 10$ Hz, H_{6a} , 1 H), 3.96 (dd, J = 10, 5 Hz, H_{6e} , 1 H), 4.10 (d, m, $J_{4,5} = 8$ Hz, H_4 , 1 H), 4.58 (m, 1 H, H₁), 5.81 (d, $J_{2,3} = 10$ Hz, H_2 , 1 H), 5.96 (ddd, $J_{1,3} = J_{3,4} = 2$ Hz, H₃, 1 H), 7.12 (m, Ar, 2 H), 7.25 (m, Ar, 3 H); HRMS, 390.1681 (M⁺·; calcd for C₂₁H₂₆O₇ 390.1678).

Acknowledgment. I thank Dr. G. S. Reddy of this department for help with the NMR experiments.

Registry No. 2, 2873-29-2; 3a, 51450-36-3; 3b, 97747-17-6; 3c, 97689-89-9; 3d, 97689-91-3; 4, 97689-95-7; 5, 97689-90-2; 6, 97689-92-4; 7, 97689-93-5; 8, 97689-94-6; DIPHOS, 1663-45-2; Pd(dba)₂, 32005-36-0; Pd(Ph₃P)₄, 14221-01-3; dimethyl malonate, 108-59-8; 2-methylcyclopentane-1,3-dione, 765-69-5; diethyl chlorophosphate, 814-49-3; potassium dimethyl malonate, 61111-62-4; benzyl bromide, 100-39-0.

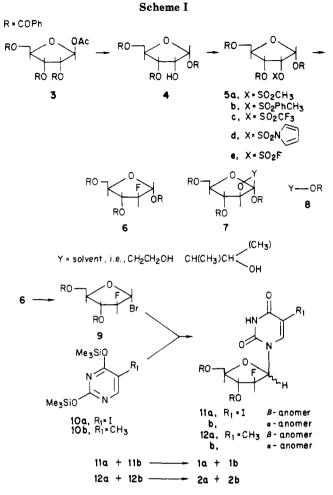

Fluorocarbohydrates in Synthesis. An Efficient Synthesis of 1-(2-Deoxy-2-fluoro- β -D-arabinofuranosyl)-5-iodouracil (β -FIAU) and $1-(2-\text{Deoxy-}2-\text{fluoro-}\beta-\text{D-arabinofuranosyl})$ thymine (β-FMAU)

Chou H. Tann,*1 Paul R. Brodfuehrer, Steven P. Brundidge, Chester Sapino, Jr., and Henry G. Howell*²

Chemical Process Development, Bristol-Myers Pharmaceutical Research and Development Division, Syracuse. New York 13221-4755

Received January 21, 1985

Recent literature^{3,4} has indicated an interest in the preparation of nucleosides with antiviral and anticancer properties. The potent antiviral activity of 1-(2-deoxy-2fluoro- β -D-arabinofuranosyl)-5-iodouracil (β -FIAU; 1a, R₁ = I) and 1-(2-deoxy-2-fluoro- β -D-arabinofuranosyl)thymine $(\beta$ -FMAU; 2a, $R_1 = CH_3$) made these compounds candidates for further synthetic development.


Results and Discussion

The most direct synthetic plan to reach 1a and 2a required the access to the fluorodeoxy sugar 6. The latter would be accessible via an appropriately blocked riboside

3644

⁽¹⁾ Present address: Schering Corporation, U-5A, Union, NJ 07083.

⁽¹⁾ Present address: Schering Corporation, C-SA, Onion, N. Orlos.
(2) Author to whom correspondence should be directed.
(3) (a) Watanabe, K. A.; Su, T.-L.; Reichman, U.; Greenberg, N.; Lopez, C.; Fox, J. J. J. Med. Chem. 1984, 27, 9. (b) Su, T.-L.; Klein, R. S.; Fox, J. J. J. Org. Chem. 1982, 47, 1506.
(4) (a) Chavis, C.; Dumont, F.; Wightman, R. H.; Ziegler, J. C.; Chavis, C.; Imbach, J.-L. J. Org. Chem. 1982, 47, 202. (b) Dumont, F.; Wightman, R. H.; Ziegler, J. C.; Chavis, C.; Imbach, J.-L. Tetrahedron Lett. 1979, 3291.

such as 4 (see Scheme I). Furthermore, the blocking groups would have to be resistant to the vigorous conditions for the fluorination but easily removed after the sugar was coupled to the nucleoside base.

It was envisioned that an appropriate sulfonate ester at C_2 of riboside 4 would result in the desired 2-deoxy-2fluoroarabinoside 6 if displacement with fluoride could be accomplished. However, it is known that sulfonates at C_2 of pyranosides do not generally undergo nucleophilic displacement and such reactions are even less common in the furanoside series.⁵ It has been suggested that nucleophilic displacement at C2 creates an unfavorable alignment of dipoles in the transition state particularly when the substituent at C_1 is the α -D-anomer.⁶ Although displacement of C₂ sulfonates like 5 appeared to be a particularly difficult case, the results of our recent study⁷ on the synthesis of 4 made large amounts available for a comprehensive study of the displacement.

The mesylate 5a and triflate 5c were prepared, but the tosylate 5b resisted our efforts to prepare it. Fluorinations of sulfonates 5a and 5c were attempted using TBAF or KHF_2 with a variety of solvents and temperatures. High-field NMR was used to detect the C_2 proton of the desired product 6, which we anticipated would give an absorption at 5.0-5.5 ppm and show a characteristic geminal fluorine-proton coupling of about 50 Hz. However, in each case the result of the attempted fluorination was either recovery of starting material or elimination product.

Table I. Fluorination of 5d

				reacn		
entry	solv	temp, °C	time, h	equiv of HF	yield of 6 ^f , %	other products
1	a	160	0.5	0	30	7,8
2	а	80	16.0	0	<10	5e
3	Ь	160	1.0	0	35	5e, 7, 8
4	с	160	1.0	0	45	5e, 7, 8
5	Ь	140	2.5	2	65	8
6	d	160	3.0	2	25	5e (55%), 8
7	d	160	3.0	0	30	5e (28%), 7, 8
8	d	160	18.0	0	60	7, 8
9	е	160	3.0	2	<5	dec
10	Ь	135	7.0	2	55	5e, 7, 8
11	Ь	135	3.5	4	60	5e
12	ь	135	3.5	6	53	5e
13	Ь	160	1.0	4	70 ^g	5e

^a Ethylene glycol. ^b 2,3-Butanediol. ^c 2,3-Butanediol/acetic acid. ^dPinacol. ^eNeat. ^f% yield based on HPLC quantitation for 6. ⁸Actual isolated yield from 100 g of 5d, 63%.

The direct fluorination of 4 with diethylaminosulfur trifluoride (DAST)⁸ also failed to give the desired product.

The imidazolylsulfonate 5d, prepared by Hanessian's procedure,⁹ was subjected to fluorination with TBAF and gave only elimination. However, treatment with KHF₂ gave a modest 30% yield of 2-deoxy-2-fluoro-1,3,5-tri-Obenzoyl- α -D-arabinofuranose (6). As anticipated, the C₂ proton appeared at 5.4 ppm as a doublet with a geminal fluorine coupling of 49 Hz. When the reaction was monitored by HPLC, an intermediate was observed to form rapidly, which was slowly converted to product, and was tentatively identified (NMR) as the sulfonyl fluoride 5e. Although we did not rigorously identify 5e, it is closely analogous to the sulforyl chloride proposed by Hanessian as the intermediate in the preparation of the sulfonylimidazole. Khan¹⁰ and co-workers also reported obtaining a sulfonyl chloride from the reaction of methyl 3-Oacetyl-4,6-di-O-benzylidene- α -D-glucopyranoside with SO_2Cl_2 . By use of HPLC to monitor the conversion of 5d to 6 the reaction was optimized to give a 63% isolated yield of the desired fluoro sugar 6. Table I summarizes the experiments that led to this result. The displacement of sulfonate by the reaction solvent results in the production of byproducts 7 and 8. Using the more hindered 2,3-butanediol results in reduced amounts of 7 and 8. Additionally, we found that hydrogen fluoride increased the rate of formation of intermediate 5e and decreased 7 and 8. The preparation of 5d and 6 has been successfully scaled up to 1.0 mol.¹¹

With the preparation of 2-deoxy-2-fluoro sugar 6, our major goal was accomplished since Fox¹² had shown the anomeric mixture of 1-bromo-3-O-acetyl-2-deoxy-2fluoro-5-O-benzoylarabinose could be coupled with silylated cytosine in 40% yield.

We briefly investigated reaction conditions reported by Vorbruggen¹³ to give high yields of nucleosides from acyl sugars. In the case of the 2-deoxy sugar 6, when we used trifluoromethanesulfonic acid, HMDS, and Me₃SiCl, the

⁽⁵⁾ See: Hough, L.; Richardson, A. C. In "Rodd's Chemistry of Carbon (6) Richardson, A. C. *Carbohydr. Res.* 1969, 10, 395.

⁽⁷⁾ Howell, H. G.; Brodfuehrer, P. R.; Sapino, C. J. Org. Chem. 1985, 50. 2597.

⁽⁸⁾ Tewson, T. J.; Welch, M. J. J. Org. Chem. 1978, 43, 1090

⁽⁹⁾ Hanessian, S.; Vatele, J.-M. Tetrahedron Lett. 1981, 3579

⁽¹⁰⁾ Khan, R.; Jenner, M. R.; Lindseth, H. Carbohydr. Res. 1980, 78, 173

⁽¹¹⁾ Scale-up was achieved by Farney, R. F., of Bristol-Myers Pharmaceutical Research and Development, Chemical Process Development

<sup>maceutical Research and Development, Chemical Process Development
Department, Evansville, IN.
(12) (a) Reichman, U.; Watanabe, K. A.; Fox, J. J. Carbohydr. Res.
1975, 42, 233. (b) Watanabe, K. A.; Reichman, U.; Hirota, K.; Lopez, C.;
Fox, J. J. J. Med. Chem. 1979, 22, 21.</sup>

⁽¹³⁾ Vorbruggen, H.; Bennua, B. Tetrahedron Lett. 1978, 1339.

coupling product was not obtained. This may be due to the fact that the alkylating species is the 1,2-acyloxonium ion which cannot be formed from a 2-deoxy sugar. The bromination of 6 with 30% HBr in acetic acid produced a quantitative conversion to $1-\alpha$ -bromo sugar 9. The NMR spectrum clearly showed only one anomer which was unambiguously assigned as the α -anomer. The coupling of 9 with bis(O-trimethylsilyl)thymine (10b) resulted in a nearly quantitative yield of nucleoside 12 as an anomeric mixture $(\alpha/\beta = 1/4)$. While the thymine coupling in CH₃CN was complete in 1.5 h at reflux, coupling of 9 with silvlated 5-iodouracil 10a required 22 h under the same conditions and resulted in a lower yield of 11 as a mixture of anomers (58%, $\alpha/\beta = 1/9$). A 95% yield of 11a,b was obtained by performing the coupling for 7 days at room temperature $(\alpha/\beta = 1/7)$. The benzoyl groups were hydrolyzed with methanolic aqueous sodium hydroxide in 90% yield and the desired β -isomers isolated by crystallization from the anomeric mixture.

The synthesis of β -FIAU (1a) and β -FMAU (2a) was therefore accomplsihed in four steps from 4 in 45% yield in an especially attractive manner. When compared to the previously published method,¹² which required 12 steps from glucose in overall yield of less than 2%, the present method is clearly superior.

Experimental Section

NMR spectra were recorded on a Bruker WM 360 or Bruker AM 360 spectrometer and are expressed in ppm. IR spectra were recorded on a Beckman 4240 spectrometer and are expressed in cm^{-1} . HPLC analyses were performed on a Hewlett-Packard 1084B instrument using a μ -Bondapak C¹⁸ reverse-phase column. Elemental analyses were performed by the Analytical Research Department of Bristol-Myers Pharmaceutical Research and Development. Melting points were determined on an Electrothermal melting point apparatus and are not corrected.

2-O-(Methylsulfonyl)-1,3,5-tri-O-benzoyl- α -D-ribofuranose (5a). A total of 20 g of 4⁷ (0.043 mol) was added portionwise to a solution of pyridine (40 mL, 0.5 mol) and methanesulfonyl chloride (4 mL, 0.052 mol) at 0 °C. After 3 h the reaction was quenched with ice-water and extracted with CH₂Cl₂ (3 × 20 mL). The extract was washed with 1 N HCl, H₂O, and brine before it was dried (Na₂SO₄). The crystalline product was obtained in two crops by addition of Skellysolve B giving 21.8 g of 5a (94.7%): mp 141-141.5 °C; IR (KBr) 3080, 3040, 3020, 1600, 715 (Ar), 1720, 1275 (COOR), 1370, 1180 (O-SO₂); ¹H NMR (CD₂Cl₂) 8.2-7.3 (m, 15 H, Ar H), 6.83 (d, 1 H, C₁H), 5.79 (dd, 1 H, C₃H), 5.44 (dd, 1 H, C₂H), 4.82-4.65 (m, 3 H, C₄H, C₅H₂), 3.04 (s, 3 H, CH₃). Anal. (C₂₇H₂₄O₁₀S) C, H, S.

2. O-[(Trifluoromethyl)sulfonyl]-1,3,5-tri-O-benzoyl- α -D-ribofuranose (5c). To a solution of 4 (4.62 g, 0.01 mol) in pyridine (20 mL) was added trifluoromethanesulfonyl anhydride (1.7 mL, 2.82 g, 0.01 mol). After 20 h the reaction was quenched in ice-H₂O and extracted with CH₂Cl₂. The extract was washed with H₂O, cold 3 N H₂SO₄, and cold saturated NaHCO₃. Drying (Na₂SO₄) and concentration gave 5.0 g of 5c (84%) as a light brown oil: ¹H NMR (CD₂Cl₂) 8.3-7.3 (m, 15 H, Ar H), 6.85 (d, 1 H, C₁H), 5.8 (dd, 1 H, C₃H), 5.55 (dd, 1 H, C₂H), 4.87 (dd, 1 H, C₄H) 4.66 (m, 2 H, C₅H₂).

2-O-(Imidazolylsulfonyl)-1,3,5-tri-O-benzoyl- α -D-ribofuranose (5d). A mixture of 4 (85 g, 0.184 mol) and 700 mL of CH_2Cl_2 was treated according to the procedure of Hanessian.⁹ After 2 h at room temperature, the hazy solution was washed with H_2O and dried over Na₂SO₄. The crystalline product was obtained by dilution with 2.5 volumes of Skellysolve B. The crude product was recrystallized from *i*-PrOH giving 93 g of 5d (85%): mp 129–130.5 °C; IR (KBr) 3130, 1600, 705 (Ar) 1720, 1225 (COOR), 1425, 1200 (O-SO₂); ¹H NMR (CD₂Cl₂) 8.2–6.9 (m, 18 H, Ar H), 6.67 (d, 1 H, C₁H), 5.63 (dd, 1 H, C₃H), 5.28, (dd, 1 H, C₂H), 4.81 (dd, 1 H, C₄H), 4.65 (m, 2 H, C₅H₂). Anal. (C₂₉H₂₄N₂O₁₀S) C, H, N, S.

2-Deoxy-2-fluoro-1,3,5-tri-O-benzoyl- α -D-arabinofuranose (6). A mixture of 5d (100.8 g, 0.17 mol), KHF₂ (53.1 g, 0.68 mol), and 250 mL of 2.3-butanediol was stirred mechanically under a stream of N_2 with an outlet to a scrubber trap. The flask was immersed in an oil bath at 160 °C, and HF (50% in H₂O, 23.5 mL, 0.68 mol) was added. The reaction was monitored by HPLC.^{14a} When the area of 6 was >70% (1 h), the reaction was quenched (150 mL of ice and 100 mL of brine) and extracted with CH_2Cl_2 (4×). The extract was washed with brine, H_2O_1 and saturated NaHCO₃ and then dried over Na₂SO₄ containing Darko-KB (10 g). The drying and decolorizing agents were removed by filtration through a pad of silica gel (240-400 mesh), and the pad was washed with CH_2Cl_2 (2 × 250 mL). The solvent was removed to give an oil, which was crystallized from 250 mL warm 95% EtOH, giving 49.6 g of 6 (62.8%): mp 82 °C; IR (KBr) 3060, 3040, 1600, 710 (Ar), 1725, 1710, 1280, 1090 (COOR); ¹H NMR (CD₂Cl₂) 8.2–7.38 (m, 15 H, Ar H), 6.7 (d, 1 H, C₁H), 5.61 $(dd, 1 H, C_3H), 5.4 (d, 1 H, J_{HF} = 49 Hz, C_2H), 4.7 (m, 3 H, C_4H)$ C₅H₂). Anal. (C₂₆H₂₁FO₇) C, H.

2-Deoxy-2-fluoro-3,5-di-O-benzoyl- α -D-arabinofuranosyl Bromide (9). The fluoro sugar 6 (41.3 g, 0.089 mol), 200 mL of CH₂Cl₂, and 49 mL (0.180 mole) of 30% HBr in acetic acid were stirred 16 h at ambient temperature. The solution was evaporated, redissolved in CH₂Cl₂, and then washed with water and saturated NaHCO₃. The solution was dried (MgSO₄) and concentrated to a viscous syrup, which was further dried under high vacuum 18 h, giving 35 g of 9 (98%): ¹H NMR (CD₂Cl₂) 8.2–7.4 (m, 10 H, Ar H), 6.67 (d, 1 H, C₁H), 5.6 (d, 1 H, J_{HF} = 50 Hz, C₂H), 5.5 (dd, 1 H, C₃H), 4.75 (m, 3 H, C₄H, C₅H₂).

2,4-Bis-*O*-(**trimethylsily**)-**5-iodouracil** (**10a**). To a mixture of 5-iodouracil (21.2 g, 0.089 mol), 200 mL of dry CH_3CN , and ammonium sulfate (1.18 g, 0.0089 mol) was added hexamethyl-disilazane (16.2 g, 21.2 mL, 0.010 mol) at 40 °C. The resulting mixture was heated at reflux for 24 hr, then cooled, and concentrated under reduced pressure to a syrup, which was used in the subsequent step.

1-(2-Deoxy-2-fluoro-3,5-di-O-benzoyl-D-arabinofuranosyl)-5-iodouracil (11a,b). A solution of 9 (17.75 g, 0.0445 mol) in 240 mL of CH₂Cl₂ was stirred with CH₃CN (50 mL) containing 10a (17.1 g, 0.0445 mol) and NaI (5.34 g, 0.0356 mol) at ambient temperature. After 7 days the reaction was diluted with methyl isobutyl ketone (150 mL) and washed with water. The two-phase mixture was filtered, giving 6.5 g of crude 11a. The organic layer was separated from the filtrate and washed with 10% sodium thiosulfate solution, water, and brine. After drving (Na_2SO_4) , the solvent was evaporated and the residue crystallized from CH₂Cl₂ (50 mL) and Skellysolve B (200 mL), giving 9.4 g of crude 11a,b ($\alpha/\beta = 1/3$).^{14b} The crude yield was 15.9 (95.8%). A sample of pure 11a was obtained by recrystallization of the crude first solid from i-PrOH: mp 197 °C; IR (KBr) 3480, 3060 (NH, OH), 3060, 1610, 710 (Ar), 1720, 1665 (COOR, CONHCO), 1265 (COOR); ¹H NMR (Me₂SO-d₆) 8.2-7.5 (m, 12 H, Ar H), 6.35 (d, 1 H, C₁H), 5.73 (dd, 1 H, C₃H), 5.58 (dd, 1 H, $J_{\rm HF}$ = 52 Hz, C₂H), 4.8 (m, 2 H, C₅H₂), 4.68 (dd, 1 H, C₄H). Anal. (C₂₃H₁₈N₂O₇IF) C, H, N.

1-(2-Deoxy-2-fluoro-β-arabinofuranosyl)-5-iodouracil (β-FIAU; 1a). A mixture of 11a (4.7 g, 0.0081 mol) in 30 mL of methanol and 30 mL of water was stirred and 3 N NaOH added slowly until a complete solution was obtained at pH 10.5. After 16 h the solution was diluted with water (25 mL) and concentrated (ca. 30 mL) and the base neutralized with 3 N HCl (pH 6.5–7.0). The mixture was cooled at 0 °C (5 h), and the product collected to give 2.7 g of 1a (90% yield): mp 223–226 °C; IR (KBr) 3400, 3200 (NH, OH), 1725, 1665, (CONHCO), 1050 (C–O); ¹H NMR (CD₃OD) 8.28 (d, 1 H, Ar H), 6.16 (dd, 1 H, C₁H), 5.04 (dd, 1 H, $J_{\rm HF}$ = 45 Hz, C₂H), 4.32 (dd, 1 H, C₃H), 3.95–3.7 (m, 3 H, C₄H, C₅H₂). Anal. (C₉H₁₀N₂O₅IF) C, H, N.

2,4-Bis-O-(trimethylsilyl)thymine (10b). To a mixture of thymine (6.4 g, 0.051 mol), (NH₄)₂SO₄ (0.6 g, 0.0045 mol), and

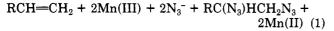
^{(14) (}a) The HPLC analysis of the fluorination reaction was carried out on a Waters μ -Bondapak reverse-phase column using 70% CH₃CN, 30% H₂O. With UV detection at 254 nm and a flow rate of 2 mL/min, the retention times were 4.8 min for 5d, 6.7 min for 6, and 7.3 min for 5e. (b) The HPLC analysis of the coupling reaction was carried out on a Waters μ -Bondapak reverse-phase column using 60% CH₃CN, 40% H₂O. With UV detection at 254 nm and a flow rate of 2 mL/min, the retention times were 1.8 min for 5-iodouracil, 4.8 min for α -FIAU (11b), 5.2 min for β -FIAU (11a), and 10.1 min for the bromo sugar 9.

CH₃CN (180 mL) at 40 °C was added hexamethyldisilazane (12 mL, 0.057 mol). The mixture was refluxed 20 h, and after removal of NH_3 with vacuum (30 mmHg, 30 min) the solution was used for the preparation of 12a,b.

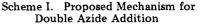
1-(2-Deoxy-2-fluoro-3,5-di-O-benzoyl-D-arabinofuranosyl)thymine (12a,b). The silvlation mixture containing 10b (13.8 g, 0.051 mol) was stirred with a solution of 9 (17.6 g, 0.042 mol) in CH₃CN (30 mL) at reflux 1.5 h. The reaction was quenched in ice-water and extracted with CH_2Cl_2 . The extract was washed with water, dried (Mg₂SO₄), and concentrated to give 19.4 g (99% yield) of crude product 12a,b ($\alpha/\beta = 1/3$).^{14b} The crude solid was stirred with 50 mL of CH₂Cl₂ and filtered, giving 4.9 g of the β -anomer 12a: mp 120–122 °C; IR (KBr) 3190 (NH), 1605, 715 (Ar), 1720, 1670 (COOR, CONHCO), 1265 (COOR); ¹H NMR (Me₂SO-d₆) 8.2-7.4 (m, 12 H, Ar H, NH), 6.37 (dd, 1 H, C_1H), 5.68 (dd, 1 H, C_3H), 5.58 (dd, 1 H, $J_{HF} = 50 Hz, C_2H$), 4.69 (m, 3 H, C₄H, C₅H₂), 1.65 (s, 3 H, CH₃). Anal. $(C_{24}H_{21}N_2O_7F)$ C, H, N.

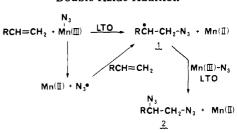
1-(2-Deoxy-2-fluoro- β -D-arabinofuranosyl)thymine (β -FMAU; 2a). A slurry of 50% aqueous methanol (220 mL) and the anomeric mixture of dibenzoyl-FMAU (12a,b) ($\alpha/\beta = 2/3$, 14.5 g, 0.031 mol) was adjusted to pH 10.5 with 3 N NaOH and maintained at that pH for 16 h. The solvent was evaporated and the residue dissolved in water (150 mL), neutralized (pH 6.5-7.0) with concentrated HCl, and evaporated to dryness. Addition of CH_3CN (50 mL) precipitated the inorganic salts, which were removed by filtration. The filtrate was evaporated to yield 7.3 g (90%) of 2a,b ($\alpha/\beta = 2/3$). A sample of the pure β -anomer was obtained by cooling a solution of the mixture in 10 mL of water for 16 h: mp 187-188 °C IR (KBr) 3460, 3400, 3000 (NH, OH), 1690, 1660 (CONHCO), 1035 (C-O); ¹H NMR (CD₃OD) 7.74 (m, 1 H, Ar H), 6.18 (dd, 1 H, C_1 H), 5.0 (m, 1 H, J_{HF} = 50 Hz, C_2 H), 4.32 (m, 1 H, C₃H), 4.0-3.8 (m, 3 H, C₄H, C₅H₂), 1.86 (s, 3 H, CH₃). Anal. $(C_{10}H_{13}N_2O_5F)$ C, H, N.

Registry No. 1a, 69123-98-4; 2a, 69256-17-3; 2b, 97672-34-9; 4, 22224-41-5; 5a, 7702-26-3; 5c, 97614-41-0; 5d, 97614-42-1; 5e, 97614-50-1; 6, 97614-43-2; 7 (Y = CH_2CH_2OH), 97614-49-8; 7 (Y = CH(CH₃)CH(CH₃)OH), 97614-51-2; 7 (Y = C(CH₃)₂C-(CH₃)₂OH), 97614-52-3; 8 (Y = CH₂CH₂OH), 94-33-7; 8 (Y = CH₂OH), 94-33-7 $CH(CH_3)CH(CH[3)OH)$, 59517-16-7; 8 (Y = $C(CH_3)_2C(CH_3)_2OH)$, 71380-60-4; 9, 97614-44-3; 10a, 38953-72-9; 10b, 7288-28-0; 11a, 97614-45-4; 11b, 97614-46-5; 12a, 97614-47-6; 12b, 97614-48-7; 5-iodouracil, 696-07-1; thymine, 65-71-4; 2,3-butanediol, 513-85-9; pinacol, 76-09-5; ethylene glycol, 107-21-1.


Conversion of Alkenes to 1,2-Diazides and 1,2-Diamines

William E. Fristad,* Timothy A. Brandvold,^{1a} John R. Peterson,^{1b} and Scott R. Thompson


Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455


Received February 15, 1985

In this paper we wish to report the direct conversion of alkenes into 1,2-diazides as shown in eq 1. This manga-

nese(III) method of vicinal difunctionalization is similar to a method of alkene chlorination reported previously by us² and represents one of the very few methods of introducing vicinal diazide functionality. Previously, Fe(III)³ and $Pb(IV)^{4a}$ have been used to convert alkenes to 1,2-

diazides, and Pb(IV) has converted 1,3-dienes to 1,4-diazides.^{4b} Electrochemical oxidation of the azide anion can also be conducted in the presence of an excess of alkene to generate mono- and diazides in addition to dinitrogen.⁵ However, the most common method of introducing vicinal diazides has been via a series of standard S_N2 displacements utilizing the highly nucleophilic azide anion.⁶

We had already demonstrated that manganese(III) acetate hydrate, Mn₃O(OAc)₇(HOAc)·5H₂O, and a chloride salt produced a Mn(III)-Cl species which was capable of oxidatively transferring a Cl ligand directly to an alkene without the intermediacy of free chlorine radicals.^{2,7} Because N_3^- has a low E_0 value (variously described as $0.88,^{5b}$ 0.78,^{5c} and 0.6^8 V vs. SCE), we felt that it should be easily oxidized and that it may undergo the same type of ligand-transfer oxidation as chlorine or simply add to the alkene as a free N_3 radical. Thus the initial step in the mechanism of double azide addition may be either production of azide radicals or a direct ligand-transfer addition to generate the β -azidoalkyl radical 1 (Scheme I). While we did not determine whether free azido radicals were formed by Mn(III) oxidation, several reaction features were noted. If N₃ radicals were formed, they were trapped very efficiently by the alkene and did not lead to large amounts of molecular nitrogen. More importantly, Mn(III) oxidation of N_3^- in a control experiment conducted in the absence of alkene required 80 min to go to completion, whereas the identical reaction with stoichiometric 1-octene was complete in 10 min. This rate enhancement necessitates that the alkene be intimately involved in Mn(III) reduction and strongly argues for the ligand-transfer oxidation rather than the intermediacy of free azide radicals. The β -azidoalkyl radical 1 apparently reacts with a second $Mn(III)-N_3$ species in a typical ligand-transfer⁹ fashion to complete the double addition.

Other oxidized metal-azide complexes have previously been shown to thermally¹⁰ or photochemically¹¹ generate N_3 which could be trapped or allowed to dimerize and produce molecular nitrogen. It was anticipated that any $Mn(III)-N_3$ complex would be very unstable, and therefore

Press: New York, 1978; p 18. (10) Trahanovsky, W. S.; Robbins, M. D. J. Am. Chem. Soc. 1971, 93,

^{(1) (}a) Lando Summer Undergraduate Fellow, 1984. (b) 3M Co. and University of Minnesota Graduate School Fellow

⁽²⁾ Donnelly, K. D.; Fristad, W. E.; Gellerman, B. J.; Peterson, J. R.; Selle, B. J. Tetrahedron Lett. 1984, 25, 607–610.
 (3) (a) Minisci, F.; Galli, R.; Cecere, M. Tetrahedron Lett. 1962, 533-

^{538; (}b) Ibid. 1963, 357; (c) Gazz. Chim. Ital. 1964, 94, 67-90.

^{(4) (}a) Hugl, H.; Zbiral, E. Tetrahedron 1973, 29, 753-757; (b) Ibid.

<sup>(1) (2), 759-767.
(5) (</sup>a) Schafer, H. Angew. Chem., Int. Ed. Engl. 1970, 9, 158-159. (b)
Kosten, K.; Riemenschneider, P.; Wendt, H. Isr. J. Chem. 1979, 18, 141-151. (c) Plzak, V.; Wendt, H. Ber. Bunsenges. Phys. Chem. 1979, 83. 481-486.

^{(6) (}a) Swift, G.; Swern, D. J. Org. Chem. 1966, 31, 4226-4229; (b) Ibid. 1967, 32, 511-517. (c) Ali, Y.; Richardson, A. C. J. Chem. Soc. C 1969, 320-329.

⁽⁷⁾ Fristad, W. E; Donelly, K. D., manuscript in preparation.

⁽⁸⁾ Thomas, J. G. N. Trans. Faraday Soc. 1962, 58, 1412–1423.
(9) Kochi, J. "Organometallic Mechanisms and Catalysis"; Academic

^{5256 - 5258}

^{(11) (}a) Bunn, D.; Dainton, F. S.; Duckworth, S. Trans. Faraday Soc. 1961, 57, 1131-1139. (b) Bartocci, C.; Scandola, F. J. Chem. Soc., Chem. Commun. 1970, 531. (c) Beck, W.; Schorpp, K. Angew. Chem., Int. Ed. Engl. 1970, 9, 735. (d) Rehorek, D.; Thomas, P.; Hennig, H. Inorg. Chim. Acta 1979, 32. L1-L2.